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Abstract. A function F : Rn → R is called a piecewise convex function if it can be decomposed
into F(x) = min{fj (x) | j ∈ M}, where fj : Rn → R is convex for all j ∈ M = {1, 2...,m}. We
consider maxF(x) subject to x ∈ D. It generalizes the well-known convex maximization problem.
We briefly review global optimality conditions for convex maximization problems and carry one of
them to the piecewise-convex case. Our conditions are all written in primal space so that we are able
to proposea preliminary algorithm to check them.
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1. Introduction

Let D be a nonempty, compact and convex subset of R
n and let M be a finite index

set. We begin by introducing some definitions.

DEFINITION 1. A function F : Rn → R is called a piecewise convex function if
it can be decomposed into:

F(x) = min{fj (x) | j ∈ M}, (1)

where fj : Rn → R is convex for all j ∈ M = {1, 2..., m}.
DEFINITION 2. A problem{

maximize F(x),

subject to x ∈ D
(PCMP)

is called a piecewise convex maximization problem, if F(·) is a piecewise convex
function and D is a convex set.
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des Transports et du Logement (projet N 226 75 01 63-41 50).
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The purpose of this paper is to establish necessary and sufficient optimality
conditions for the piecewise convex maximization problems (PCMP).

Such problems have many practical and theoretical applications [9], but a solu-
tion for them does not seem to have been extensively studied.

If in (1) all functions fj (·) are affine and ‘min’ is replaced by ‘max’ then the
problem (PCMP) turns out to be a convex maximization problem (CMP) with
piecewise-linear convex function. Of course, it also simplifies to (CMP) whenever
m = 1.

An important property of the convex maximization problem is that every local
(and in particular global) solution is achieved at an extreme point of the feasible
domain. In general, this property does not hold for (PCMP) as a large number of
local optima could lie anywhere in D.

The present paper is organized as follows. First, we recall some local and global
necessary and sufficient conditions for the convex maximization in Section 2. As
a result, we derive optimality conditions for a nonsmooth convex maximization
problems; in Section 3, we extend the previous section’s result to (PCMP) and in
Section 4, we propose a preliminary algorithm for (PCMP) based on our global
optimality conditions.

2. Convex Maximization Problem

Let D ⊂ R
n be a convex and compact set and let f : R

n → R be a convex func-
tion; in this section, we consider the global optimization (convex maximization)
problem:{

maximize f (x),

subject to x ∈ D
(CMP)

The state-of-the-art in convex maximization including many algorithms and abund-
ant applications, is extensively described in text books [5, 6], in papers [2, 8, 13, 14]
and surveys [1].

In recent years, several interesting necessary and sufficient optimality condi-
tions characterizing a global maximum (z ∈ D) of (CMP) have been proposed:

Strekalovsky’s necessary and sufficient condition ([12])

∂f (y) ⊂ N(D, y) for all y : f (y) = f (z), (SgNS)

Hiriart-Urruty’s necessary and sufficient condition ([7])

∂εf (z) ⊂ Nε(D, z) for all ε � 0, (HUgNS)

and Flores-Bazan’s necessary and sufficient condition ([3])

∂γ f (z) ⊂ ∂γ δ(·|D)(z), (FBgNS)
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where ∂f (y) and N(D, y) are the subdifferential of a function f (·) and normal
cone to a set D at point y, respectively

∂f (y) = {y∗ ∈ R
n | f (x) − f (y) � 〈y∗, x − y〉 for all x ∈ R

n},
N(D, y) = {y∗ ∈ R

n | 〈y∗, x − y〉 � 0 for all x ∈ D},
∂εf (z) and Nε(D, z) are the ε-subdifferential of a function f (·) and the set of
ε-normal directions to a set D at a point z, respectively

∂εf (z) = {z∗ ∈ R
n | f (x) − f (z) � 〈z∗, x − z〉 − ε for all x ∈ R

n},
Nε(D, z) = {z∗ ∈ R

n | 〈z∗, x − z〉 � ε for all x ∈ D},
δ(·|D) is the indicator function of D and ∂γ f (z) is the γ -subdifferential of a
function f (·) at point z:

∂γ f (z) = {φ(x) ∈ C | f (x) − f (z) � φ(x) − φ(z) for all x ∈ R
n}.

It is worthwhile noticing that the above the conditions generalize Rockafellar’s
local necessary optimality condition

∂f (z) ⊂ N(D, z). (RlN)

It is not difficult to see that (SgNS) with (y = z), (HUgNS) with (ε = 0) and
(FBgNS) with (linear φ) all imply (RlN).

The aim of this section is to improve the (classical) local necessary optimality
condition

∂f (z)
⋂

N(D, z) �= ∅ (ClN)

in order to fully describe a global maximum; the classical condition (ClN) is not
sufficient even for a local maximum.

THEOREM 1 [16]. Let z ∈ D and assume there exists a v ∈ R
n s.t. f (v) < f (z).

Then a necessary and a sufficient condition for z ∈ D to be a global maximum for
(CMP) is:

∂f (y)
⋂

N(D, y) �= ∅ for all y s.t. f (y) = f (z) (gNS)

Proof.
(⇒) Let z solve (CMP), in other words f (z) � f (x) for all x ∈ D. Then, due

to convexity of the function f (·) and the definition of subdifferential, for all y such
that f (y) = f (z)

0 � f (x) − f (z) = f (x) − f (y) � 〈y∗, x − y〉,
holds for all y∗ ∈ ∂f (y) and x ∈ D so that y∗ ∈ ∂f (y)

⋂
N(D, y).
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(⇐) By contradiction, let z not a global maximum of (CMP). Thus, there is a

u ∈ D such that f (u) > f (z).

Then, let us consider a convex combination of u and a point v such that f (v) <

f (z)

y(α) = αv + (1 − α)u.

There is a number α0 ∈]0, 1[ such that f (y(α0)) = f (z) since f (·) is continuous
and f (v) < f (z) < f (u). Now, one shows ∂f (y(α0)) �⊂ N(D, y(α0)).

For all subgradients y∗
0 of f (·) at y(α0) satisfying f (y(α0)) = f (z) and for

u ∈ D, the following holds

〈y∗
0 , u − y(α0)〉 = 〈y∗

0 ,
y(α0) − α0v

1 − α0
− y(α0)〉

� α0

α0 − 1
(f (v) − f (y(α0))) > 0,

proving y∗
0 �∈ N(D, y(α0)) for all y∗

0 ∈ ∂f (y(α0)).

REMARK 1. The classical local necessary condition (ClN), compared to the ne-
cessary part of the global optimality condition (gNS), only considers z instead of
all points on the level set {y | f (y) = f (z)}.
REMARK 2. When f (·) is a differentiable function, we retrieve Strekalovsky’s
condition (SgNS) since ∂f (y) consists of a single element ∇f (y).

REMARK 3. In the case of a nondifferentiable function f (·) one can see the
difference between (gNS) and (SgNS) since the latter is in general intractable
to check (see example).

EXAMPLE 1. Consider the problem in R
2 to maximize the piecewise linear con-

vex function (polyhedral) defined by (see Figure 1):

f (x1, x2) = max{2x1 + 3x2, 3x1 − x2,−2x1 + x2,−2x1 − 6x2}
subject to

D = {x ∈ R
2 / − 3 � xi � 3, i = 1, 2}.

– At point z = (3,−3)�, the classical optimality condition (ClN) is satisfied:
for z∗ = (3,−1)� ∈ ∂f (z), 〈z∗, x−z〉 � 0 holds for all x ∈ D; however, z is not
local maximum since Rockafellar’s condition (RlN) is violated (for instance,
the subgradient z∗ = (−1,−3)� ∈ ∂f (z), but z∗ �∈ N(D, z)).

– The point z′ = (3, 3)� is a local maximum. But local optimality information
does not allow us to decide whether it is a global maximum.
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Figure 1. Example 1

Let us denote U(z) = {y ∈ R
2 / f (y) = f (z)} and U(z) = U1 ∪U2 ∪U3 ∪U4,

where

U1(z) = {y / 2y1 + 3y2 = f (z)},
U2(z) = {y / 3y1 − y2 = f (z)},
U3(z) = {y / − 2y1 + y2 = f (z)},
U4(z) = {y / − 2y1 − 6y2 = f (z)}.

Using Theorem 1, it is easy to see that the necessary condition is violated at
point z′ = (3, 3)� since for all y ∈ U4(z

′) y∗ = (−1,−3)� ∈ ∂f (y) but
y∗ �∈ N(D, y); therefore, z′ is not a global maximum.

– Now, let consider the point z′′ = (−3,−3)�; in order to conclude for a global
maximum, one has to check the sufficient part of the global optimality condition
(gNS). According to Theorem 1, it amounts to checking whether y∗

i belongs to
N(D, yi), for all yi ∈ Ui, i = 1, 2, 3, 4.
Notice that using Strekalovsky’s condition (SgNS) instead, requires to check-
ing in addition y∗ ∈ ∂f (y), for all y ∈ Uk(z)∩Ul(z) and (k, l) ∈ {(1, 2), (2, 3),
(3, 4), (4, 1)}, which is an intractable problem in general.
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3. Piecewise Convex Maximization Problem

In this section, we consider the nonconvex and nonsmooth piecewise convex max-
imization problem (also known as the discrete maxmin problem){

maximize F(x),

subject to x ∈ D
(PCMP)

where D ∈ R
n is a convex and compact set and F(·) is piecewise convex.

We will use further notations, clco(D) as the closure of the convex hull of set
D and :

I (z) = {i ∈ M / fi(z) = F(z)},
Dk(z) = D ∩ {x | fj (x) > F(z) for all j ∈ M \ {k}}

for respectively, a set of active functions at z, and a special subdomain.

LEMMA 1. If for a point z ∈ D, both F(z) � F(x) for all x ∈ D and fk(z) =
F(z) for some k ∈ M hold, then fk(z) � fk(x) for all x ∈ Dk(z).

Proof. Let us assume that there exists some u ∈ Dk(z) such that fk(u) > fk(z).
Then, from u ∈ Dk(z) we get fj (u) > F(z) for all j ∈ M \ {k} so that F(u) =

min{fj (u) | j ∈ M} > F(z), a contradiction to F(z) � F(x) for all x ∈ D.

Lemma 1 together with the necessary part of (gNS) provides a necessary con-
dition for a global solution to (PCMP).

PROPOSITION 1. If z ∈ D is a global maximum of (PCMP) then for all k ∈ I (z)

∂fk(y)
⋂

N(Dk(z), y) �= ∅ for all y s.t. fk(y) = F(z). (gN)

Proof. By definition of the set I (z) we have fk(z) = F(z) for all k ∈ I (z) ⊂ M.
Then by Lemma 1, if z solves (PCMP) then z is maximum for fk(·) over Dk(z) for
all k ∈ I (z). Using the necessary part of theorem 1 and the definition of I (z) leads
to

∂fk(y)
⋂

N(Dk(z), y) �= ∅ for all y s.t. fk(y) = fk(z) = F(z).

In order to strengthen this necessary condition and achieve a sufficient condition
for (PCMP), we first prove the following two lemmas.

LEMMA 2. Given vectors c ∈ R
n and u ∈ clco(Dk(z)), then there exists a w ∈

Dk(z) such that 〈c, u〉 � 〈c,w〉.
Proof. Let us assume that there exists some c ∈ R

n and u ∈ clco(Dk(z)) such
that 〈c, u〉 > 〈c,w〉 for all w ∈ Dk(z).

Then, by Caratheodory’s theorem [10] (p. 155) u ∈ clco(Dk(z)) implies that
there are x1, x2, ..., xn+1 ∈ Dk(z) and nonnegative αi ∈ R such that

∑n+1
i=1 αi =
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1 and u = ∑n+1
i=1 αix

i . From assumption, we have 〈c, u〉 > 〈c, xi〉 for all i =
1, 2, ..., n+ 1. Now, multiplying the previous inequalities by corresponding αi and
summing yields

n+1∑
i=1

αi〈c, u〉 > 〈c,
n+1∑
i=1

αix
i〉 = 〈c, u〉,

a contradiction.

LEMMA 3. Given continuous functions g(·), h(·), let ϕ(·) = min{g(·), h(·)}. If
for all x ∈ D,h(x) > ϕ(z) � g(x) for some z then ϕ(z) � ϕ(x) for all x ∈ D.

Proof. We will use the simple observation in R that for any a, b, c, if a � b then
min{a, c} � min{b, c}. Decompose D as disjoint union D = D+ ∪ D−, where
D+ = D ∩ {x | h(x) > ϕ(z)} and D− = D ∩ {x | h(x) � ϕ(z)}.

For x ∈ D+, from g(x) � ϕ(z) one has min{g(x), h(x)} � min{ϕ(z), h(x)}
and hence ϕ(z) � ϕ(x) for all x ∈ D+.

For x ∈ D−, from h(x) � ϕ(z) one has min{h(x), g(x)} � h(x) � ϕ(z) and
hence ϕ(z) � ϕ(x) for all x ∈ D−.

We are now in a position to establish the main result of this section.

THEOREM 2. Let z ∈ D and assume there exist a k ∈ I (z) and a v ∈ R
n s.t.

fk(v) < fk(z). Then a sufficient condition for z to be a global maximum for
(PCMP) is:

∂fk(y)
⋂

N(clco(Dk(z)), y) �= ∅ for all y s.t. fk(y) = F(z) (gS)

Proof. By the sufficient part of Theorem 1 applied to v of (gNS) condition
above, we have

fk(z) � fk(x) for all x ∈ clco(Dk(z))

and hence

fk(z) � fk(x) for all x ∈ Dk(z). (2)

Denoting ψk(x) = min{fj(x) | j ∈ M \ {k}} then x ∈ Dk(z) implies

ψk(x) > F(z) for all x ∈ D.

On the other hand, F(z) = fk(z) holds, since k ∈ I (z). Therefore, (2) is equivalent
to F(z) � fk(x) for all x ∈ D such that ψk(x) > F(z).

Finally, using Lemma 3 we get z a global maximum since

F(z) � F(x) = min{fk(x), ψk(x)} for all x ∈ D.



8 IDER TSEVENDORJ

REMARK 4. The assumption that there are k ∈ I (z) and v ∈ R
n such that

fk(v) < fk(z) means that z is not a local minimum of F(·) in R
n. If this assumption

is violated, in other words if for all k ∈ I (z) one has z = arg min{fk(x) | x ∈ R
n},

then F(z) = fk(z) � fk(x) (k ∈ I (z)) and F(z) < fj(z)(j ∈ M \ I (z)). Hence
there exists some neighborhood say a ball around z of radius ε > 0 such that for
all x ∈ B(z, ε) ∩ D we have F(z) � F(x).

On the other hand, for all k ∈ I (z) 0 ∈ ∂fk(z)∩N(clco(Dk(z), z). In this case,
a local search can improve F(z) since any feasible direction gives a better point
with respect to (PCMP).

REMARK 5. The sufficient global optimality condition (gS) could be written as
follows


there exist a k ∈ I (z) and a v ∈ R

n s.t. fk(v) < fk(z)

and there also exists a y∗
k ∈ ∂fk(y) s.t. 〈y∗

k , x − y〉 � 0,

for all x ∈ clco(Dk(z)) and y s.t. fk(y) = F(z).

REMARK 6. Let (gS) be violated at z, in other words for all k ∈ I (z) there are
yk, uk fullfilling respectively fk(y

k) = F(z) and uk ∈ clco(Dk(z)) and such that
for all y∗

k ∈ ∂fk(y
k) the inequality 0 < 〈y∗

k , u
k − yk〉 holds.

Then by Lemma 2 there exists a wk ∈ Dk(z) such that 〈y∗
k , u

k〉 � 〈y∗
k , w

k〉.
So, due to the convexity of all functions fk(·) we have 0 < 〈y∗

k , u
k − yk〉 �

〈y∗
k , w

k − yk〉 � fk(w
k) − fk(y

k), that implies F(z) < fk(w
k). On the other

hand, by definition of Dk(z), wk ∈ Dk(z) implies wk ∈ D and F(z) < fj(w
k) for

all j ∈ M \ {k}. As a result, we have a better point wk ∈ D.

REMARK 7. By Proposition 1 and Lemma 2 it is easy to see that (gS) is not
only a sufficient, but a necessary and sufficient condition for a global maximum of
(PCMP).

EXAMPLE 2. Consider the problem in R
2 to maximize the piecewise convex

function:

F(x) = min{fj(x) | j = 1, 2, 3, 4, 5},
where

f1(x) = x2
1 + (x2 + 4)2 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 − 36,

f3(x) = x2
1 + (x2 − 8)2 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 − 53,

f5(x) = (x1 − 10)2 + (x2 + 10)2 − 4

subject to

D = {x ∈ R
2 | −4 � x1 � 10, −6 � x2 � 8, x1 − x2 � 10}.
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Figure 2. A simple example 2

– The point z = (6,−4)� is a local maximum with F(z) = 0. One wonders if it is
a global maximum.
The Lebesque set LF (F (z)) ( where Lφ(α) = {x ∈ R

n | φ(x) � α}) con-
tains two nonconnected sets and one of them is a nonconvex set (see Figure 2.).
Functions f1(·) and f4(·) are active at z.
Let us consider the function f1(·). According to our notation

D1(z) = D ∩ {x | f2(x) > 0, f3(x) > 0, f4(x) > 0}

since f5(x) > 0 for all x ∈ D and F(z) = 0.
In order to use the necessary global optimality condition (gN), one has to check
the inclusion D1(z) ⊂ Lf1(F (z)). It is easy to see that D1(z) is not included in
Lf1(F (z)) since at y = (0, 2)� : f1(y) = F(z) and u = (0, 3)� ∈ D1(z) the
inequality 〈∇f1(y), u − y〉 > 0 holds. Therefore z is not a global maximum.

– Now, we consider another point z∗ = (−1.08333, 2.83333)� which is also a
local maximum. At the point, functions f2(·), f3(·) are active. And one can see
that D2(z

∗) is included in Lf2(F (z∗)), (F (z∗) = 11.8681). That is enough,
according to the sufficient global optimality conditions (gS), to say that z∗ is a
global maximum.
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Figure 3. A non trivial example 3

EXAMPLE 3. Here we consider a piecewise convex maximization problem in R
2

with functions (see Figure 3.)

f1(x) = x2
1 + (x2 + 2)2 − 9,

f2(x) = 9(x1 + 3)2 + 4x2
2 − 36,

f3(x) = (x1 + 1)2 + (x2 − 4)2 − 4,

f4(x) = 1

9
(x1 − 3)2 + 1

36
(x2 − 4)2 − 1,

f5(x) = (x1 − 5)2 + (x2 + 5)2 − 1

subject to the box constraint:

D = {x ∈ R
2 | −2 � x1 � 5, −3 � x2 � 4}.

We consider it just to show some difficulty of solving (PCMP). It seems to us that
even this two dimensional problem is not trivial to solve.

It is easy to see that there are a number of local maxima on the vertices, edges
and interior of the box. In other words, the global maximum could be anywhere in
the box.
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As in Example (2) using (gN) we can escape from local maxima which are on
the box vertices and edges, and look for it inside the box. There is no point in the
box where all functions f1(·), f2(·), f3(·), f4(·) are active.

Here the point (−1.3286, 1.7381)� is a global maximum with a value of f (z) =
1.2240.

4. A Preliminary Algorithm

The problem in proving Lemma 2 is that Caratheodory’s theorem only provides the
existence of a point in Dk(z). This section is devoted to turning (gN) and (gS) into
an algorithm under further weak assumptions.

Let us assume that in (1) all functions fj (·) are quadratic and strongly convex.
Let, furthermore, the domain set of (PCMP) be a full dimensional polytope; in
other words

fj (x) = 1

2
〈Qjx, x〉 − 〈cj , x〉, j ∈ M,

D = {x ∈ R
n | Ax � b},

where Qj = [Qj ]� and Qj > 0 (positive definite) and dim(D) = n .
Let x ∈ D.

1. Let z be a local maximum of (PCMP) with the starting point x.
2. Construct I (z) and choose s ∈ I (z).
3. Approximate Ds(z) by polytope 2 = {x ∈ R

n | Px � p}, where Ds(z) ⊂
2 ⊂ D.

4. for l=1 to maxiteration do
y = random point on level set fs(y) = F(z) not in tabu list;
u = arg max{〈∇fs(y), x〉/x ∈ 2}; /* linearized problem */
if 〈∇fs(y), u − y〉 > 0 and u ∈ Ds(z)

then x := u; goto 1; /* better point */
else

if u �∈ Ds(z)

then 2 := 2
⋂{x | 〈d, x〉 � n, } /* add cutting plane */

if 〈∇fs(y), u − y〉 � 0
then add y on tabu list /* tabu point on level set */

endfor

REMARK 8. Cutting plane
Let us compute r = arg minj {fj (u) | j ∈ M} and the index set of active
constraints at u

J (u) = {l | [Pu]l = pl},
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where P (resp. P(u)) denotes the matrix of constraints (resp. active constraints at
u) of polytope 2; under the full dimensionality assumption, [P(u)]−1 definitely
exists. Let V be the set (columnwise) of points on the level set fr(·) intersected by
the active cone, namely

V = u ⊗ e� − [P(u)]−1αr,

where ⊗ denotes Kronecker’s product and (αr ∈ R
n+) solves the quadratic equa-

tions for every column vector vi of V

fr(v
i(α)) = F(zk).

Then vector d, found as a solution of the linear system V d = n yields a new
cut for polytope 2, as is well known in global optimization field; notice that right-
hand-side introduces a normalizing factor to avoid tailing off effects since it is usual
to observe such effects in similar algorithms [4, 11].

REMARK 9. Under full dimensionality of (PCMP), each level set could be par-
titioned through the linearized problem at y (each class having the solution u of
linearized problem as a representative). This suggests introducing some tabu list
throughout the random generation. Let y be a random point on level set fs(y) =
F(z), then y is tabu if

y = [Qs]−1[c + P(u)β],
for some β ∈ R

n+ such that 〈e, β〉 = 1. A non full dimensional case might re-
quire deeper insight into the projection and lifting processes to reach at the same
partitioning concept!

REMARK 10. In practice we can use D = {x | Ax � b} as an initial 2.

REMARK 11. Whenever 〈∇fs(y), u − y〉 > 0 and u ∈ Ds(z), we have found a
better point to restart a local search, since

0 < 〈∇fs(y), x − y〉 � fs(x) − fs(y) = fs(x) − F(z),

according to the convexity of fs(·). Moreover, by definition of Ds(z), we have
fi(x) > F(z) for all i ∈ M \ {s}, which achieves F(x) � F(z).

5. Concluding Remarks

In this paper we have shown how global optimality conditions for (CMP) carries
over to (PCMP) and we have given a preliminary algorithm for (PCMP).

Considering the well known result [10], [14] from convex analysis:
given two convex sets A,B ∈ R

n(B = cl(B)). Inclusion A ⊂ B is true if one of
the following equivalent conditions is satisfied



PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 13

1. (B − y)◦ ∈ (A − y)◦ for y ∈ (A ∩ B);
2. σ (y | A) � σ (y | B) for all y ∈ R

n;
3. N(y | B) ⊂ N(y | A) for all y ∈ bd(B);

our main Theorem 1, adds the further refinement to the last item

• N(y | B)
⋂

N(y | A) �= ∅ for all y ∈ bd(B)

where cl(D), D◦, σ (· | D), N(· | D), bd(D) are used for the closure, the
polar, the support function, the normal cone and the boundary of D respectively.

To show the close connection with this refinement, we used in Section 2, for
(CMP), A = D, B = Lf (f (z)) and in Section 3, for (PCMP), A = clco(Dk(z)),
B = Lfk (F (z)).
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